
Hierarchical Reinforcement Learning with
Trajectory Optimization for Unitree Go2 on

Extreme Terrain
Anand Majmudar Faraz Rahman Ian Pedroza

Fig. 1. Extreme Column Terrain

Abstract—We use a trajectory optimizer as a high-level planner
for footstep positions to achieve a given end goal position.
We train a reinforcement learning model with Proximal Policy
Optimization as a low-level actor to control quadruped Unitree
Go2’s actuators to achieve those target footstep positions. We
then train and test this hierarchical system on extreme terrain
including separated pillars for the quadruped to cross.

I. INTRODUCTION

A. Setting

Our goal is to run a mobile policy on the Unitree Go2 to
allow it to pass through extreme terrain, especially this spaced
multi-column environment (see Fig 1.) which necessitates
well-planned foot placement with little room for error. The
Unitree Go2 is a 12-actuator (3 per leg) affordable quadruped
robot which also has access to lidar and is often used for agile
locomotion tasks.

B. Motivation

The baseline, Proximal Policy Optimization incentivized to
have positive forward velocity, maintain vertical position, and
obey torque and actuator positional constrains, fails to traverse
the terrain and most importantly has an unnatural gait. We aim
to instead use a traditional Trajectory Optimizer as a higher-
level planner for footsteps and a lower-level reinforcement
learning policy to achieve those desired positions with a
defined steady gait.

II. RELATED WORK

Much of the inspiration for our project comes from the
Deep Tracking Control paper [1] from RSL at ETH Zurich.
The paper builds off of previous work in online quadrupedal
Trajectory Optimization. Specifically, the TO model is based
on the paper Terrain Aware Optimization for Legged Systems
(TAMOLS) [2], another project out of RSL.

TAMOLS [2] is a perceptive motion planning algorithm that
uses a local height map to better plan foot steps to achieve a
desired reference trajectory. In a sim2real implementation, this
height map may be generated from a LiDAR or learned from
live-cameras.

We also use Extreme Parkour [3] to bootstrap our Reinforce-
ment Learning environment setup, infrastructure, and reward
shaping on extreme terrain.

III. METHODS

A. Trajectory Optimizer

We built our trajectory optimization algorithm PyDrake
using the SNOPT solver as closely as possible to the TAMOLS
reference design. In order to meet solving time requirements
we relaxed the problem setup by only requiring that the Go2
move forward (i.e. not turn). Fig 2 is a visualization of the
motion plan generated based on the height map of stairs
terrain.

1) TAMOLS overview: Our implementation of TAMOLS
solves for the four next optimal footholds (one for each leg)
as well as a polynomial spline that parametrizes a trajectory
for the quadruped’s center of mass the xyz-coordinates and
ZYX-Euler angles.

The foot holds are given by

pi, i ∈ {0, 1, 2, 3}

The base pose is given by

ΠB = [pB ϕB ]

where pb represents the XYZ coordinates and ϕB represents
the ZYX Euler angles. The splines are split into k segments
called phases. For the kth phase, the lth dimension of the base
pose trajectory is parametrized as:

ΠB,kl(t) = a0kl + a1klt+ · · ·+ a4klt
4

where t ∈ (0, τ) and τ is the length of each spline, k ∈
[0, Ns − 1] indexes the spline segment and Ns is the total
number of phases, and a0kl, . . . , a4kl are the coefficients of the
polynomial. This notation is consistent with the original paper
and will give us language to discuss the modifications we made
to help our implementation. However more in depth discussion
on the derivation of the planner can be found in the original
paper [2]. We will limit our discussion to modifications we
made to the algorithm to simplify implementation.



2) Our modifications to TAMOLS: The original paper uses
a sequence of quadratic program (SQP) to solve the con-
strained non-linear program (NLP). Each iteration of the SQP
used the Guass-Newton method to approximate the objective
with a convex surrogate. They then use a custom solver to
efficiently find local optima. Without the flexibility of custom
tooling we choose to modify to the original problem to ease
the optimization in SNOPT and PyDrake. Specifically, we

• Switch the gait from a trot (i.e. diagonal feet move in
sync) to a walk (i.e. each leg moves one at a time)

• Assume reference trajectory moves forward at some con-
stant velocity

• Use a manual warm-start of initial foot positions instead
of using a smoothed height map to solve a more relaxed
problem as a warm start to the full optimization.

The walking gait allowed three legs make contact with the
ground at all times. This assumption allowed unify the dynam-
ics constraints into (17a) and (17b) from [2], and let us ignore
(17c, d). Originally the dynamics constraints would alternate
between (17b) and (17c, d) depending on whether 3 or more
legs were in contact with the ground for the respective phase.

µeTz · aB ≥ ∥(I3×3 − eze
T
z ) · aB∥ N > 0 (17a)

m det(pij ,pB − pi,aB) ≤ pT
ij · L̇B N ≥ 3 (17b)

m det(pij ,pB − pi,aB) = pT
ij · L̇B N = 2 (17c)

det(ez,pij ,Mi) ≥ 0 N = 2 (17d)

Here N is the number of legs in contact with the ground, µ
is a friction coefficient, pij = pj − pi, Mi is the moment
about foothold i (derived in the [2]) and aB is an acceleration
vector. Note that removing (17c) eliminates the only equality
constraint in the dynamics model. More discussion on how this
may have benefited the optimization will be in the following
section.

The assumption of a forward velocity reference trajectory
means that the angular momentum will remain near zero along
the motion plan. Once again we see this simplify our dynamics
since it zeroes out the RHS of (17b).

m det(pij ,pB − pi,aB) ≤ 0 N ≥ 3 (17b)

The forward assumption also allows us to manually warm-
start the optimization based on the given reference forward
velocity. The original formulation used a smoothed height-
map to do this. The smoothed height map provided a smoother
optimization landscape allowing to the solver to find a neigh-
borhood near the global optimal before solving further. An
example objective which used this graduated technique was
the following objective.

min∇hs1(pi)
T∇hs1(pi).

Which encouraged footholds to be on flatter terrain. Note that
h(·) is a function from xy-coordinates to a height and that
hs1(·) here is a smoothed version.

3) Implementation: The optimizer was built using PyDrake
and SNOPT. The source code for the optimization itself can be
found at https://github.com/farazsrahman/fetch. We use Plotly
to make the custom visualizations to debug the TO.

B. Actor-Critic Proximal Policy Optimization

For the actual simulation of the Go2 and terrain, we
use NVIDIA Isaacgym which can parallelize and accelerate
simulation rollout on NVIDIA GPUs (thus we ran this on a
2-GPU cluster).

For the RL portion, we use Actor-Critic architecture and
train with Proximal Policy Optimization.

Actor-Critic architecture has a Critic network, which is a
network approximating the value function (given state-action
pairs, output rewards-to-go), and an Actor Network, which
actually makes actuator torque decisions which impact the
next state of the environment. Both are implemented as MLPs
of linear layers and Exponential Linear Unit activations (a
smoother and sometimes-negative ReLU).

Both share the same observation space, which for the
baseline consists of the Unitree Go2’s joint linear and angular
velocities, actions, and the 14 by 14 heightmap of terrain close
to the quadruped.

Proximal Policy Optimization uses a clipped objective func-
tion to prevent too-large updates to the actor or critic networks
in a single step, leading to more stable learning over a longer
training time. It also simultaneously optimizes both the actor
and critic networks for sample efficiency and to ensure the
most current value estimates are used for each actor update.

We use a learning rate of 1e−3 along with the other default
RSL RL PPO hyperparameters.

We reward the network for proximity to the current next set
of goal footsteps (in a diagonal gait pattern: first reward one
diagonal pair of legs, then when that pair reaches the targets,
we switch to rewarding the other pair). We also reward it
for z-stability in position and velocity (maintaining the same
height), positive forward velocity, increasing forward position,
using less torque, maintaining a flat orientation, staying within
actuator positional limits, and reducing xy angular velocity.

The final run was 2000 episodes of training parallelized
across 200 environments.

IV. RESULTS

A. Baseline RL

The base RL policy was able to traverse a few columns but
fell shortly after due to the lack of proper gait and its inability
to select perceptively select footholds. These shortcomings
reflected the issues mentioned in the paper in that RL is
increasingly data-inefficient as rewards become sparse [1]. In
this case the large gaps between columns are what made the
set of valid (reward-able) footholds sparse.

B. Trajectory Optimizer

We tested the trajectory optimizer on a number of terrains
and were able to consistently see reasonable solutions solu-
tions. Figures 2 and 3 display two examples of such terrains.



Fig. 2. Planner going up the stairs

Fig. 3. Planner avoiding hole

The first displays an iterative call to the planner picking
footsteps and center of mass trajectory up a flight of stairs.
The second shows how the planner picks trajectories that are
away from holes or sloped parts of terrains. Time to solver
convergence often took 1-2 seconds, however the problem
setup and auto-differentiation in PyDrake added an additional
10-15 seconds depending on which costs and constraints were
enabled.

C. Hierarchical model

We were unable to recover the performance of the base-line
policy on the hierarchical model, due to issues in training the
the two systems end-to-end. The rest of this section will be
dedicated to a reflection on what worked, what did not work
and what we would do in the future to address the issue.

1) What worked: We were able to achieve one full training
run end-to-end. However the resulting policy did not learn a
proper gait and could not walk forward. The primary issue
we identified was that the feet shot forward towards the
the planned footstep. We suspect that this happened because
the simple reward of smaller squared distance to the desired
foothold dominated the rewards for moving forward. A solu-
tion would likely be in the form of a better engineered reward
function.

2) What did not work: We categorize takeaways into the
following two sections

• Optimization speed, online learning, and the height
map: When designing the RL curriculum we assumed
that the solver would be fast enough to provide solutions
on line when queried by the training loop. This assump-
tion did not hold and the solver (which often took 1-2
seconds) slowed down the training process. One item to
note is that the solving time was significantly impacted
by cost functions that leveraged the height map. This
was not surprising because PyDrake had no symbolic
expression that native-ly accepted the discrete height map
data-structure. The only way to implement the height map
without a custom PyDrake module was by adding a cost
for every entry of the height map and every foot that
was conditioned on whether the corresponding foot was
located at the respective xy position.

A solution to speeding up the optimization would
likely require implementing the optimization problem
in directly with PySNOPT or using the Gauss-Newton
approximation directly using a vector library in a faster
language such as Julia or C++.

Another, less engineering intensive solution that would
still suffice for experimental purposes would have been
moving the trajectory optimization offline. A curriculum
could have sampled a series of initializations for the
quadruped, run the optimization algorithm over each
of these initializations and then used this fix set of
trajectory plans and initializations to formualte training
the policy into a semi-supervised learning problem. The
resulting policy would be less result to out of distribution
initializations, but would serve as a good test for the rest
of our setup in the absense of a faster planner.

• Reward Function Tuning and Debugging: As men-
tioned in the previous section the reward for moving the
foot towards the planned location dominated the base
rewards resulting in a policy that simply shot its end-
effector towards the target. A simple change that would
make the reward more sparse would be to only punish
the distance from the desired foothold when the foot is
in contact with the ground. This would also encourage
lifting the foot when the foot is not near the reward.

One item to note here is that we struggled to prop-
erly debug our model since Isaac Gym provides lim-
ited rendering support when working remotely. Without
visualization of the training procedure reward function
engineering can become a challenging art. We believe
that newer tools such as Isaac Lab, or a non-remote server
setup could have provided a better debugging experience.

Lastly, assuming we designed better reward function,
it is likely that we would have also needed to hyper-
parameter tune the reward weights which we were unable
to do since the training speed bottle necked the number
times we could try different curricula.



V. FUTURE WORK

Future work for this project would involve reward tun-
ing further and adjusting the RL-TO infrastructure so the
quadruped is encouraged to meet the target foot positions
not just by moving its legs straight to those positions, but
by stepping according to the predefined natural gait. This was
expanded upon in the previous section. Further down the line,
it would be nice to see this policy deployed on the real Unitree
Go2.

Another interesting experiment would be to drop the planner
at inference time and just use the policy. The planner would
still be used to train the model, but the information it provides
would be distilled in to the RL policy during training to make
the learning more sample-efficient.

REFERENCES

[1] Jenelten et al, Deep Tracking Control: https://arxiv.org/abs/2309.15462
[2] Jenelten et al, TAMOLS https://arxiv.org/abs/2206.14049
[3] Cheng et al, Extreme Parkour https://arxiv.org/pdf/2309.14341


